AI/ML for Design (10/Oct/2022) Session Summary

(Wouter Deconinck & Evaristo Cisbani)

- Max Balandat MOO Tutorial
- Karthik Suresh Adaptive experimentation in EIC
- Benjamin Nachman Al-driven detector design
- Elena Fol ML in LHC
- Todd Satogata Al/ML for Accelerator Design

Max Balandat / Multi Objective Optimization (tutorial)

• Ingredients:

- Several parameters >10 that define the potential design space
- Constrains on parameters
- Multiple Objectives to be optimize (either minimized or maximized) → require time-consuming computation

Adopted Approach

 Parallel Bayesian Optimization of vector based black-box functions, with Expected Hypervolume Improvement → superior sampleefficiency → find the Pareto frontier of optimal trade-offs

Implementation

BoTorch (Bayesian Optimization on top of PyTorch)
 https://botorch.org/tutorials/multi_objective_bo
 Ax (Adaptive Experimentation Platform) recommended for scheduling, storage, high-level APIs

M.B. / MOO Limitations, Hints and Beyond

Limitations / Hints	Beyond Limitation, R&D, Advanced Features	
 Scalability model fitting is O(n³) with Gaussian Process surrogate (n = data points) statistical efficiency and model quality degrade with larger number of parameters hypervolume is super-polynominal in number of objectives Regions of interest of the objective functions 	 High dimensional MOBO SAASBO: for high-dimensional problems where few pars have large influence → sparsity-inducing prior + Markov Chain Monte Carlo inference MORBO: multi-objective trust Region BO for efficient scaling of high number of evaluation points 	
 proper settings improve efficiency 		
Noisy data (intrinsic tolerances, environmental variations) • provide to model helps optimization	 Noisy data MARS: Modified value-at-risk approximation based on Random scalarizations 	
 Numerical precision double precision is reccomended to mitigate ill- conditioned linear systems 	Mixing Discrete and Continuos parameters • probabilistic reparameterization by optimizing discrete variable over a probability distribution	

Karthik Suresh / Adaptive experimentation in EIC (an overview)

- Practical implementation of MOO + GEANT4 in ECCE tracker design
 - design parameters ~ 10
 - constrains ≥3 (hard + soft), no (GEANT4) overlaps
 - objective functions: momentum, (projected) angular resolutions, tracking reconstruction ability
 - validation: compare achieved performance with "baseline" and post-hoc reconstructed physics observables
 - exploit existing software libraries

 based on Multi-Objective Evolutionary Algorithm and Bayesian Optimization (MOEA and MOBO)

 $M(\pi^+ K) \text{ GeV/c}^2$

migration from ECCE to ePIC software framework ongoing

Benjamin Nachman Al-driven detector design

10

10-10-

10-

Goal: find best detector parameters given a

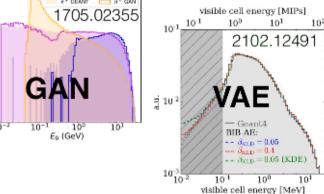
metric(s) → ML

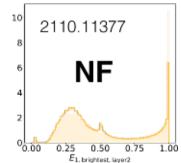
Detector Modeling

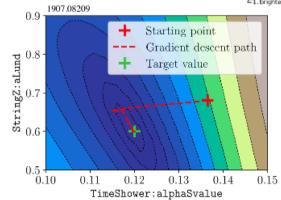
- Surrogate models

- Variational Autoencoders
- Normalizing Flows
- Differentiable Simulation $sim(\mu_0 + \epsilon) \approx sim(\mu_0) + \frac{\partial sim}{\partial \mu} \epsilon$

- Gradient descend
- Calorimetry application in progress







Todd Satogata / Al/ML for Accelerator Design (an overview)

- Computer optimization methods and AI/ML applications for Accelerator Physics in use since forever
- Some AI/ML Challenges
 - Computational complexity
 - Dealing with highly "pervasive" Coulomb interactions
 - Interesting beam dynamics problems are mainly non-linear
 - Many tradeoffs: cost → performance → technical challenges → R&D efforts
- Snowmass21 Accelerator Modelling Community White Paper
 - focuses on Accelerator modeling (design) priorities/strategies
 - provide reccomendations for next generation accelerator modeling
- Impact of AI/ML on EIC accelerator design questionable

T.S. / AI/ML for Accelerator Design

(an overview)

- Some ongoing AI/ML approaches:
 - Multi-Objective Genetic Algorithm regurlarly used for component optimization (e.g. SRF gun)
 - Require human intervention near parametric singularities;
 - many different codes/approaches
 - Virtual/Digital Twin
 - Inexpensive generation of dataset; online modeling; operator training
 - WP: can explore larger parameter space with possibility of design innovative particle accelerators in the future
- Very recent advances may impacting in Accelerator Design
 - Fundamental Algorithm Improvements, e.g. in computational linear algebra
 - Nonlinear/Chaotic system forecasting → accelerator surrogate models → initial nolinear design

Elena Fol / ML in LHC Optics Control

(maximize luminosity \rightarrow control β)

Application	Approach	Advantage
Detection of Instrumentation Faults	Anomaly detection by Isolation Forest (decision-tree) Algorithm	detection of unexplored hardware and electronics problems in BPMs
Predict Optimal settings	Decision Tree/Random Forest	save operation time; LHC upgrade study: model is able to apply corrections in single iteration with $\Delta\beta/\beta$ <2%
De-noising of beam measurements	Autoencoder NN to denoise (simulated) data	improvement measurement quality; possibility to reconstruct phase advance in faulty BPMs locations
Virtual Diagnostics	Reconstruct optics observables without direct measurements by supervised learning with linear regression model	potential speed-up of machine commissioning

✓ Paving the way for new studies currently being in progress:

- Optics corrections for High Luminosity LHC upgrade (Reinforcement Learning)
- Exploring more complex optics error sources in the LHC: coupling corrections
- Improving Dynamic Aperture estimates using clustering
- Optimizing the design of future colliders (Ionisation Cooling channel for a muon collider).

Sparse outcomes from Q/A

- AI/ML applications in physics (and any other field) involve new multidisciplinary expertises and need to reconsider dissemination and dedicated positions in the research physics teams
- AI/ML is not a universal tool; it should be applied when/where appropriate and other "traditional" approaches are not adequate/less performing
- AI/ML approaches are not generally accepted as engineering tools yet; need efforts to move toward this direction
- EIC can take advantage of AI applications for control, commissioning, monitoring and operation of accelerators (and should consider these opportunities during design)
- R&D on AI/ML for EIC design does not match current funding framework (and project timing)
- Socialogical aspects behind optimization individual design vs collaboration process